
 Dual-Level Parallelization of Structural Acoustics Computations

 H Allik, a R N Dees, a T C Oppe, b D Duffy c

 a BBN Technologies, Mystic, CT 06355-3641
 b DMC, ERDC MSRC , Vicksburg, MS 39180-6199
 c CSC, ERDC MSRC, Vicksburg, MS 39180-6199

Key words: Parallel computing; Structural acoustics; MPI; OpenMP

Abstract

This paper describes the parallelization of a finite element/infinite element structural

acoustics code on two high-performance computers. On the SGI Origin 2000 and the

IBM Power3 SMP, the code exploits dual-level parallelism, with the Message-Passing

Interface (MPI) being used to parallelize coarse-grain computations and OpenMP being

used to parallelize several fine-grain computations within each MPI process.

1. Introduction

The solution of large, three-dimensional, submerged structures subjected to time-

harmonic loadings is usually accomplished today by solving sets of complex equations

resulting from modeling the structure with finite elements and the fluid with finite and

infinite acoustic elements. This method leads to a banded set of equations that can be

solved much faster than those resulting from the use of the more traditional Boundary

Element model of the fluid. However, as one adds to structural complexity, or attempts

solutions at higher frequencies, the number of degrees-of-freedom and the bandwidths

grow to such an extent that weeks or even months of computer time are required to obtain

a solution. Obviously, times like these are unacceptable for performing design

calculations. Because of problems of such magnitude, BBN’s SARA [1] software was

ported to the SGI Origin 2000 and the IBM Power3 SMP platforms in hopes of attaining

reasonable turn-around times after parallelization. The Origin 2000 at the U.S. Army

Engineer Research and Development Center (ERDC) Major Shared Resource Center

(MSRC) has 128 MIPS R10000 195-MHz processors, while the IBM Power3 SMP has

64 nodes, each with eight 222-MHz processors sharing a 4-GB memory space.

2. Equations of Motion

The coupled equations of motion solved in structural acoustics can be written as

 (K - ω 2 M) u -L p = f s

 (1)
 -L T u + c(H - 2ω Q) p = f f

where in the structural equation K is the stiffness, M the mass, u the displacement vector,

and f s the force vector. Analogous matrices H and Q relate the scalar pressure p to the

fluid loadings f f . In the equation, ω is the circular frequency, ρ is the fluid mass

density, and c=1/(ρ ω 2). The L matrix provides the coupling between the structure and

the fluid. Equations (1) are complex, symmetric, and banded when the structure and fluid

portions are interleaved. Typically, these equations are solved for hundreds of

frequencies and for numerous right-hand sides. Having the displacement and pressure

results, various types of postprocessing are performed, such as using the Helmholtz

equation to calculate field pressures from results on the structure-fluid interface.

3. Method of Parallelization

3.1 Coarse-Grain Parallelism with MPI

SARA employs an inherently parallel algorithm in which the structure is excited at

different frequencies, and the work for each frequency is independent of all others.

Hence, using the work of each frequency as the parallel step is an obvious one. Only in

recent years, however, has there been enough computer memory and disk space to allow

simultaneous solutions of large three-dimensional problems. The part of the code that

cycles through the user-specified frequencies, called the “frequency loop,” was

parallelized using Message-Passing Interface [2], with each MPI process handling a

different set of frequencies. To achieve load-balancing, a “boss-worker” strategy was

employed in which one MPI process, the “boss,” assigns a new frequency to the next

available “worker” MPI process that has completed its work for a prior frequency. Once

the last frequency has been processed, all MPI processes except one are terminated in

preparation for the postprocessing phase.

3.2 Fine-Grain Parallelism with OpenMP

During the frequency loop, the majority of time (more than 90%) is spent in solving the

equations, and hence the frontal solver was the first area within an MPI process to be

parallelized using OpenMP [3] threads. A frontal solver is a specialized form of

Gaussian elimination that organizes the elements of the mesh along a series of

computational wavefronts selected in such a way that the front “width,” or maximum

population of nodes in a front, is minimized. This process is analogous to reordering the

rows and columns of a matrix to reduce its bandwidth, which in turn reduces the memory

and number of operations required by Gaussian elimination. Nodes are activated in the

front when a new element is assembled, but as soon as a node is fully summed, it is

eliminated. The front then consists of all active nodes, and the inactive ones have either

not appeared or have already been eliminated. The global linear system is never

completely assembled in memory, but instead the assembly and elimination are

alternated, with the factors written to disk in a scratch file. Hence the frontal method is

an out-of-core solver. The factors are read later in the back-substitution phase when the

nodes (and fronts) must be accessed in reverse order.

A version of the frontal solver was effectively parallelized for 6-8 processors using

OpenMP. Once an equation is ready to be eliminated, every coefficient in the active

front and in the right-hand-side vectors needs to be modified. These are totally

independent calculations. The matrix and right-hand-side information can be partitioned

into nearly equal pieces and the work assigned to different processors. The equation to

be eliminated is made available to every processor, and each one performs the

elimination operation, but with different starting and ending indices.

Once the major time-consuming operations have been effectively parallelized, some of

the lesser operations in the code become significant. Several of these were parallelized at

the loop level using OpenMP. These included several “prefront” calculations, used to

symbolically factorize the matrix prior to numerical factorization, and some parts of the

front-width minimization routine. Finally, OpenMP was used to parallelize the

calculation of field pressures using the Helmholtz integral equation in the postprocessing

phase.

3.3 Disk Files

During the course of a SARA run, several files are written to disk, and their use has to be

coordinated among the MPI processes. Most files are guarded so that only one MPI

process would write to them. Many of these files, however, are internal binary

“write/read” files that needed to be subsequently read by all the MPI processes. Thus,

some amount of synchronization was necessary to prevent the reading of an incompletely

written file. An example is the large disk file that contains the matrices of all the

frequency-independent elements in the model. These matrices are calculated and placed

in a file during the first frequency. During subsequent frequencies, the file is read and the

system matrix built using the new frequency.

 The largest file is the internal binary scratch file needed by the frontal solver. Each

“worker” MPI process required its own version of this file, since each one was generating

and solving its own set of linear systems. The size of these frontal solver scratch files

effectively limits the number of MPI processes that can be used in a large run, and thus

arose the need to parallelize the computations within each MPI process. This “dual-

level” parallelism allowed each MPI process to complete its work more quickly, allowing

the processing of more frequencies in a given time without using more MPI processes

and thus more disk space.

Some postprocessing of results is done in SARA during the frequency loop in order to

avoid storing the entire solution. This was not possible when running in parallel.

Instead, the MPI processes wrote the solution for each frequency to a disk file whose

filename incorporated the number of the frequency. After all frequency solution files

were written, a new loop was implemented to postprocess the files in the correct order.

This avoided major revisions of the postprocessing segment of the code.

4. Examples

Table 1 contains timing statistics for runs on the ERDC MSRC SGI Origin 2000 and

IBM Power3 SMP computers for a finite element model involving 187,571 degrees of

freedom. In this run, 11 frequencies were processed. The model was run first

sequentially and then using 12 MPI processes and four OpenMP threads per MPI process.

Only the solution results include both MPI and OpenMP parallelism; the rest were one-

time operations for each MPI process and hence limited to a maximum speedup of four.

Tables 2 and 3 show the speedup of the prefront subroutine and the frontal solver,

respectively, using OpenMP with four and eight threads.

The results given in Table 4 demonstrate the effectiveness of assigning more threads to a

run at the expense of using fewer MPI processes. The problem contains 292,693 degrees

of freedom with a front-width of 642. As can be seen, Run 2 takes less wall-clock time

than Run 1 and takes approximately one-half the memory and disk space as well. The

memory requirements are less since roughly half the number of program executables are

running simultaneously. The same problem when run on a single processor Origin took

76.5 hours.

5. Conclusions

The dual-level parallelization of the structural acoustics calculations in SARA using MPI

and OpenMP have been very successful in reducing the elapsed running times of large

jobs. In one analysis, computations estimated to take more than 1,600 hours on a single-

processor machine were completed in 22 hours on an IBM Power3 SMP platform, for an

almost 75-fold reduction. The solution times attainable through parallel computations

make it possible to incorporate the results of large-scale models into the design process,

making feasible some analyses that were previously impractical.

Acknowledgement

This work was supported in part by a grant of computer time from the Department of

Defense High Performance Computing Modernization Program at the ERDC MSRC,

Vicksburg, MS.

References

1. Allik H, Moore S, Dees R. Efficient Structural Acoustic Analysis Using Finite and

Infinite Elements, ASME 15th Biennial Conference on Vibration and Noise, Volume 3,

Part B, Boston, MA, September 1995; 87-92.

2. Snir M, Otto S, Huss-Lederman S, Walker D, Dongarra J. MPI – The Complete

Reference: Vol.1, The MPI Core, 2nd ed., Cambridge: The MIT Press, 1998.

3. OpenMP Architecture Review Board, OpenMP Fortran Application Program Interface,

Version 1.1, 1999, Available online at http://www.openmp.org.

 Origin Timings(sec) SMP Timings(sec)

 Phase Serial Parallel Serial Parallel
__
Problem Setup 309 198 240 157

Prefront 3402 859 3262 849

Solution 15284 1627 12899 1253

Postprocessing 118 30 173 47

 Total Time 19186 2746 16671 3145
__

 Table 1
 SGI Origin 2000 and IBM Power3 SMP Timings

 Total Serial Parallel Parallel
Problem dof Original 4 threads Speedup 8 threads Speedup

 1 76607 519 138 3.8 83 6.2

 2 113595 1177 307 3.8 178 6.6

 3 187571 3308 1005 3.3 563 5.9

 4 245519 5728 1434 4.0 784 7.3

 5 362340 12400 3409 3.6 1594 7.8

__

 Table 2
Efficiency of OpenMP Threads on the Prefront Subroutine Using the IBM Power3 SMP

 Front- Serial Parallel Parallel
Problem width Original 4 threads Speedup 8 threads Speedup

 1 515 3864 1646 2.3 1488 2.6

 2 974 45168 8677 5.2 5887 7.7

 3 1068 2018 372 5.4 247 8.1

 4 2278 32266 13111 2.5 8131 4.0
__

 Table 3
Speedups of Frontal Solver (Factorization and Forward Substitution) Using OpenMP
Threads on the SGI Origin 2000

 Run 1 Run 2
__

IBM SMP nodes 7 7

MPI processes/ node 4 2

OpenMP threads/ MPI process 2 4

Total number of frequencies 48 48

Max. freq./MPI process 2 4

 Total time (hours) 3.28 2.54
__

 Table 4
 Effectiveness of Using More Threads per MPI Process

